Numerical approximation of vector-valued highly oscillatory integrals
نویسنده
چکیده
We present a method for the efficient approximation of integrals with highly oscillatory vector-valued kernels, such as integrals involving Airy functions or Bessel functions. We construct a vector-valued version of the asymptotic expansion, which allows us to determine the asymptotic order of a Levin-type method. Levin-type methods are constructed using collocation, and choosing a basis based on the asymptotic expansion results in an approximation with significantly higher asymptotic order.
منابع مشابه
Moment-free numerical approximation of highly oscillatory integrals with stationary points
We present a method for the numerical quadrature of highly oscillatory integrals with stationary points. We begin with the derivation of a new asymptotic expansion, which has the property that the accuracy improves as the frequency of oscillations increases. This asymptotic expansion is closely related to the method of stationary phase, but presented in a way that allows the derivation of an al...
متن کاملTWO LOW-ORDER METHODS FOR THE NUMERICAL EVALUATION OF CAUCHY PRINCIPAL VSlLUE INTEGRALS OF OSCILLATORY KIND
In this paper, we develop two piecewise polynomial methods for the numerical evaluation of Cauchy Principal Value integrals of oscillatory kind. The two piecewisepolynomial quadratures are compact, easy to implement, and are numerically stable. Two numerical examples are presented to illustrate the two rules developed, The convergence of the two schemes is proved and some error bounds obtai...
متن کاملEfficient Computation of Highly Oscillatory Integrals by Using QTT Tensor Approximation
We propose a new method for the e cient approximation of a class of highly oscillatory weighted integrals where the oscillatory function depends on the frequency parameter ω ≥ 0, typically varying in a large interval. Our approach is based, for xed but arbitrary oscillator, on the pre-computation and low-parametric approximation of certain ω-dependent prototype functions whose evaluation leads ...
متن کاملNumerical quadrature of highly oscillatory integrals using derivatives
Numerical approximation of highly oscillatory functions is an area of research that has received considerable attention in recent years. Using asymptotic expansions as a point of departure, we derive Filon-type and Levin-type methods. These methods have the wonderful property that they improve with accuracy as the frequency of oscillations increases. A generalization of Levin-type methods to in...
متن کاملQuadrature methods for highly oscillatory singular integrals
We study asymptotic expansions, Filon-type methods and complex-valued Gaussian quadrature for highly oscillatory integrals with power-law and logarithmic singularities. We show that the asymptotic behaviour of the integral depends on the integrand and its derivatives at the singular point of the integrand, the stationary points and the endpoints of the integral. A truncated asymptotic expansion...
متن کامل